Synthesis of Niobium Pentoxide Aerogels

Edmond I. Ko* and Scott M. Maurer

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Niobium pentoxide (Nb₂O₅) was successfully synthesized as an aerogel which, after calcination at 773 K for 2 h, had a Brunauer–Emmett–Teller (BET) surface area of 190 m² g⁻¹ and acidity comparable to that of niobic acid.

Subsequent to the pioneering work of Kistler,¹ there have been many studies on the preparation of aerogels of inorganic oxides.^{2,3} In a typical procedure, an appropriate precursor is hydrolysed to form first a sol and then a gel. The term aerogel refers to a sample obtained from drying the gel under supercritical conditions. In this article we report on the successful synthesis of an aerogel of niobium pentoxide (Nb₂O₅) by following the semicontinuous extraction procedure of Cheng *et al.*⁴

In our method the precursor, niobium ethoxide $[Nb(OEt)_5;$ Alfa], was dissolved in s-butyl alcohol and then quickly added to a well mixed solution of s-butyl alcohol, deionized water, and nitric acid. The resulting solution turned into a clear gel upon standing under the following conditions: Nb(OEt)₅/

Table 1. Physical characteristics of niobium pentoxides.

Sample	BET surface area/m ² g ⁻¹	Nb ₂ O ₅ phase ^a
A-Nb ₂ O ₅	190	Amorphous
P-Nb ₂ O ₅	50	Τ́Τ
$X-Nb_2O_5$	70	TT
^a Determined by X-ray d	iffraction.	

Table 2. Acidity distributions from n-butylamine titration.

Bu^sOH 0.50 mmol/ml; water/Nb 10 mol/mol; HNO₃/Nb 1.0 mol/mol. The gel was extracted in a standard autoclave (Autoclave Engineers, model 08U-06-60FS) with supercritical CO₂ (Airco) at *ca.* 343 K and 2.07 × 10⁷ Pa for 2–3 h, resulting in a dry, granular solid. This solid was heated in flowing nitrogen at 673 K for 2 h, and then in flowing oxygen at 773 K for 2 h to give a sample denoted as A-Nb₂O₅.

Two other Nb₂O₅ samples were prepared for comparison. A precipitated sample, denoted as P-Nb₂O₅, was made by adding ammonium hydroxide to a methanolic solution of niobium ethoxide. A xerogel, denoted as X-Nb₂O₅, was made by bypassing the supercritical extraction step in the synthesis of the aerogel. Instead the gel was dried by heating in an oven at 383 K for 3 h. The surface area and X-ray diffraction results of these three samples after the same heat treatment as used for the aerogel are shown in Table 1. After being calcined at 773 K, the Nb₂O₅ aerogel had a Brunauer–Emmet–Teller (BET) surface area which was 3–4 times larger than that of the two samples prepared by conventional methods and remained X-ray amorphous. To our knowledge this is the highest surface area ever reported for niobium pentoxide.

 $A-Nb_2O_5$ was also acidic as determined by the Benesi method with n-butylamine titration.⁵ As shown in Table 2, its acidity was significantly higher than that of the other two

		Acid amount/mmol g^{-1}					
Sample	pK_a	-8.2	-5.6	-3.0	+1.5	+3.3	+4.8
A-Nb ₂ O ₅		0.20	0.44	0.45	0.47	0.52	0.74
$P-Nb_2O_5$		0.00	0.01	0.01	0.04	0.05	0.10
X-Nb ₂ O ₅		0.00	0.02	0.03	0.04	0.04	0.06
Niobic acida		0.00	0.40	0.48	0.60	0.62	
A-Nb ₂ O ₅ ^b		0.00	0.10	0.10	0.12	0.18	0.26
^a Taken from ref. 7 for a sample calcined	at 393 K.	^b Sample o	calcined at	873 K for 2	2 h.		

Nb₂O₅ samples and, in fact, comparable to that of niobic acid which has been found active for isomerization and dehydration.⁶ One final observation is that the acidity of A-Nb₂O₅ decreased upon heating at 873 K for 2 h, concurrent with the appearance of weak diffraction features of TT-Nb₂O₅. This interesting structure-acidity relationship is under investigation in our laboratory.

This work was supported by the Niobium Products Company, Inc.

Received, 19th April 1990; Com. 0/01752C

References

- S. S. Kistler, Nature, 1931, 127, 741.
 S. J. Teichner, in 'Aerogels, Proceedings of the First International Symposium,' ed. J. Fricke, Springer-Verlag, Berlin, 1986, pp. 22-30. 3 R. J. Ayen and P. A. Iacobucci, *Rev. Chem. Eng.*, 1988, **5**, 157.
- 4 C.-P. Cheng, P. A. Iacobucci, and E. N. Walsh, U.S. Pat. 4,619,908, 1986.
- 5 H. Benesi, J. Phys. Chem., 1957, 61, 970.
- 6 T. Iizuka, K. Ogasawara, and K. Tanabe, Bull. Chem. Soc. Jpn., 1983, 56, 2927.
- 7 Z. Chen, T. Iizuka, and K. Tanabe, Chem. Lett., 1984, 1085.